Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes

(Affiliations can be found after the references)
Submitted 18 February 2014

ABSTRACT

Context. The Crab pulsar is the only astronomical pulsed source detected at very high energy (VHE, E>100GeV) gamma-rays. The emission mechanism of VHE pulsation is not yet fully understood, although several theoretical models have been proposed.

Aims. In order to test the new models, we measured the light curve and the spectra of the Crab pulsar with high precision by means of deep observations.

Methods. We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in stereoscopic mode. In order to discuss the spectral shape in connection with lower energies, 4.6 years of Fermi-LAT data were also analyzed.

Results. The known two pulses per period were detected with a significance of 8.0 σ and 12.6 σ. In addition, significant emission was found between the two pulses with 6.2 σ.

Conclusions. We discovered the bridge emission above 50 GeV between the two main pulses. This emission can not be explained with the existing theories. This data can be used for testing new theoretical models.

Key words. pulsars: individual: Crab pulsar – gamma rays: stars

1. Introduction

The Crab pulsar and the surrounding Crab nebula are the remnant of the supernova of 1054. It is one of the youngest pulsars known and its spin down luminosity (4.6 × 10^{38} erg/s) is the highest among Galactic neutron stars. A remarkable feature of the Crab pulsar is that it is visible at all wavelengths, from radio (10^{-3} eV) to VHE gamma-rays (> 10^{11} eV). To date, this pulsar is the only one for which pulsed emission has been detected above 100 GeV.

Gamma-ray pulsation from the Crab pulsar up to ~ 10 GeV had been known since 1990s from EGRET observations (Nolan et al. 1993). In 2008, pulsations were found by the MAGIC telescope at energies above 25 GeV (Aliu et al. 2008). This result suggested that the emission originates in the outer magnetosphere. The simplest curvature radiation scenario...
in the outer magnetosphere predicts an exponential cutoff in the energy spectrum at GeV energies. *Fermi*-LAT observations from 100 MeV to a few tens of GeV, which started in August 2008, showed a clear break in the spectrum at ~ 6 GeV (Abdo et al. 2010) supporting this scenario. A few years later, however, MAGIC and VERITAS (Aleksić et al. 2011, 2012a, 2012b; VERITAS Collaboration et al. 2011) found that the energy spectrum of the Crab pulsar extends up to 400 GeV following a power law. The emission above 100 GeV is difficult to explain with the curvature radiation, and additional or different emission mechanisms were required. Several new models were recently proposed that can explain the energy spectrum of the Crab pulsar.

Here we present new results of the continuing monitoring of the Crab pulsar with the MAGIC telescopes that will constrain any model for the emission. In order to discuss the Crab pulsar spectra at energies lower than those accessible to MAGIC, *Fermi*-LAT data were also analyzed.

2. Instruments, data sets and analysis methods

2.1. The MAGIC Telescopes

The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes located on the island of La Palma (Spain) at 2200 m above see level. Both telescopes consist of a 17 m diameter reflector and a fast imaging camera with a field of view of 3.5°. The trigger threshold for regular observations at zenith angles below 35° is around 50 GeV and the sensitivity above 290 GeV (in 50 h) is 0.8% of the Crab Nebula flux with an angular resolution better than 0.07° (Aleksić et al. 2012b). The first telescope started operation in 2004, while the second one became operational in 2009.

For this study we used 135 hours of data taken at zenith angles below 35° during optimal technical and weather conditions between September 2009 and April 2013. Standard MAGIC analysis, as described in Moralejo et al. (2009) and Aleksić et al. (2012b), was applied to the data. The conversion from event arrival times to pulsar rotational phases used Tempo2 software (Hobbs et al. 2006) and a dedicated package inside MARS (López Moya 2006). The spin parameters of the Crab pulsar were taken from the monthly reports of the Jodrell Bank Radio telescope (Lyne et al. 1993).

2.2. *Fermi*-LAT

The Large Area Telescope (LAT) is a pair conversion gamma-ray detector on board of the *Fermi* satellite (Atwood et al. 2009). It can observe high energy gamma-rays from 20 MeV to more than 300 GeV. It has been operational since August 2008 and all the collected data are publicly available. In this work, we have used 4.6 years of “Pass 7” data (Ackermann et al. 2012) from 2008 August 4 to 2013 March 7.

Along with the public data, the LAT team provides the corresponding analysis software and instrument response functions (IRF) designed for the analysis of that particular dataset. We have used the version v9r27p1 of the *Fermi*-LAT ScienceTools. From the downloaded data we have discarded events taken at zenith angles above 100° to reduce the contamination of albedo-gamma-rays coming from the Earth’s limb. To compute the pulse phase, we used the same spin parameters as for the MAGIC analysis. The obtained fluxes were computed by maximizing the likelihood of a given source model using the gtlike tools. Apart from the galactic and extragalactic diffuse emission, we considered as background sources for the likelihood fits only the strongest ones in the second LAT source catalogue (Nolan et al. 2012), i.e., IC 443 and Geminga.

3. Results

3.1. Light Curve above 50 GeV

Figure 1 shows the light curves of the Crab pulsar measured by MAGIC. Two peaks are clearly visible. Following our previous study (Aleksić et al. 2012), we define phase ranges for the two peaks as P1M (phase 0.017 to 0.026) and P2M (0.377 to 0.422). The background (hadrons and continuum gamma-rays) level is estimated using the phase range between 0.52 and 0.87. The number of excess events in P1M between 50 and 400 GeV is 930 ± 120 (8.0 σ) and that in P2M is 1510 ± 120 (12.6 σ).

In addition to the main two peaks, significant emission between them is also visible. The region between the peaks is generally called ”Bridge”. Defining Bridge region as the gap between P1M and P2M, namely, between 0.026 and 0.377 (hereafter BridgeM), we obtain an excess of 2720 ± 440 (6.2 σ) events in this region. Adopting the definition used at lower energies for Bridge as the region 0.14 – 0.25 from Fierro et al. (1998) (hereafter BridgeG), then the number of excess events is 880 ± 200 (4.4 σ). This excess increases to 1940 ± 370 (5.2 σ) if we extend BridgeG with the so-called trailing wing of P1 and the leading wing of P2, namely to the interval of 0.04 – 0.32 (see Fierro et al. 1998).

3.2. Comparison with lower energies

Figure 2 shows the light curves at optical, X-ray and gamma-ray energies obtained with various instruments, together with the 50 – 400 GeV light curve from the bottom panel of figure 1. The intensity and morphology of the bridge emission varies considerably with energy. It is very weak at optical wavelengths and much sharper and a prominent bridge emission appears.

It is known that the flux ratio between the two peaks strongly depends on energy, as does the ratio between the first peak and the bridge (see e.g. Kuiper et al. 2001). The figure 3 shows the flux ratio between P2M and P1M and that between BridgeG and P1M as a function of energy from optical (~ 2 eV) to 400 GeV. P2M/P1M and BridgeG/P1M behave similarly. These ratios increase with energy up to 1 MeV, decreasing up to 100 MeV, to increase again from that energy on. At 50 – 400 GeV, the ratios basically follow the trend seen at lower energies.

3.3. Spectral energy distribution

The spectral energy distributions (SEDs) of the P1M, P2M, BridgeM and BridgeG between 100 MeV and 400 GeV are shown in Figure 4, together with the Crab nebula SED obtained with a subset of the data used for the pulsar analysis. The SEDs were calculated using *Fermi*-LAT data below 50 GeV (below 200 GeV for the nebula), and MAGIC data above 50 GeV. The nebula SED is connected smoothly between the two instruments. The *Fermi*-LAT data were fit with a power law with and exponential cutoff, while the MAGIC data were fit with a simple power law function. The obtained fit parameters are summarized in table 1. The power law indices between 50 and 400 GeV are about 3 and no...
Fig. 1. Light curves of the Crab pulsar obtained by MAGIC from 50 to 100 GeV (top), from 100 to 400 GeV (middle) and for the full analyzed energy range (bottom). The bin widths around the peaks are 4 times smaller than the rest in order to highlight the sharpness of the peaks.

Fig. 2. Light curve of the Crab pulsar at optical wavelength, 2.4 – 10 keV X-rays, 0.75 – 10 MeV and 100 – 300 MeV gamma rays (from top to bottom). The light curve at 50 – 400 GeV is overlaid on each plot for comparison. The optical light curve was obtained by the MAGIC telescope using the central pixel of the camera (Lucarelli et al. 2008). keV and MeV light curves are from Kuiper et al. (2001). 100 – 300 MeV light curve was produced using the Fermi-LAT data.

Fig. 3. P2/M/P1 ratio (black markers) and BridgeE/P1 ratio (red markers) as a function of energy. At optical energies (a few eV), the ratios are obtained using the central pixel of MAGIC camera. From 100 eV to 100 MeV, ratios are computed based on the light curves shown in Kuiper et al. (2001). From 100 MeV to 30 GeV, Fermi-LAT data were used.

4. Discussion

In summary, the Crab pulsar above 50 GeV exhibits a light curve with a significant bridge emission between two sharp peaks (Figure 1). The flux ratios P2/M/P1 and BridgeE/P1 increase with increasing photon energy between 100 MeV and 400 GeV (Figure 2 and 3). Between 30 GeV and 400 GeV, the fluence in the bridge phase is comparable to the one in the P1 phase (Figure 4). The SEDs in the 50 – 400 GeV range could be fit with power-law functions for the three phases.

significant difference is seen between different pulse phases. The uncertainty in the absolute energy scale is estimated as 17%, whereas the systematic error of the flux normalization is estimated to be 18%. The difference of this number from the one given in Aleksić et al. (2012b) is mainly due to a more precise background estimation from the off-peak region. We estimate the overall systematic uncertainty to be 0.3.

4. Discussion

In summary, the Crab pulsar above 50 GeV exhibits a light curve with a significant bridge emission between two sharp peaks (Figure 1). The flux ratios P2/M/P1 and BridgeE/P1 increase with increasing photon energy between 100 MeV and 400 GeV (Figure 2 and 3). Between 30 GeV and 400 GeV, the fluence in the bridge phase is comparable to the one in the P1 phase (Figure 4). The SEDs in the 50 – 400 GeV range could be fit with power-law functions for the three phases.
Detection of pulsed VHE emissions favors emission sites in the outer part of the magnetosphere, because a strong source attenuation is expected at lower energies. The outer-gap (OG) and the slot-gap models have been the most probable explanation of such pulsed γ-rays (Watters & Romani 2011; Harding et al. 2008). Using an ad hoc extension of the two-dimensional meridional OG model to three dimension, Tang et al. (2008) and Takata et al. (2008) reproduced the bridge emission. However, a fully three-dimensional electrodynamical structure is required to model the phase resolved SEDs (Hirotani 2011, 2013).

Alternatively, a very strong magnetic-field-aligned electric field arises near the light cylinder (LC), pulsed VHE photons might be also emitted there (Bednarek 2012). Emission from beyond the LC can also explain the double-peaked light curves (Arka & Dubus 2013) demonstrated that a sufficient luminosity and a hard spectrum extending to 100 GeV can be obtained for P1 and P2 via the synchrotron emission by a hot plasma from the current sheet slightly outside the LC. But in this scenario, the bridge emission should disappear above 10 GeV. Chkheidze et al. (2013) proposed that synchrotron radiation generated near the LC during the quasi-linear stage of the cyclotron instability can produce the phase-aligned pulsation between radio- and γ-rays. However, the formation of a bridge component is not explained in this model.

Although a synchrotron luminosity declines sharply beyond the LC, the inverse-Compton process may still be effective there. Aharonion et al. (2012) demonstrated that the observed pulsed flux of the Crab pulsar between 70 GeV and 400 GeV can be explained by up-scattered photons by a particle-dominated wind whose Lorentz factors exceed 5×10^6 at $20 \sim 50$ LC radii. Although a phase-resolved spectrum is not provided in their paper, the observed P2/P1 ratio in VHE could be reproduced if one considers an anisotropic wind.

In closing, none of the current models can consistently account for the properties of the pulsed and bridge emission from the Crab pulsar.

Acknowledgements. We would like to thank Felix Aharonian and Dmitry Khangulyan for useful discussions on the pulsar emission models. We would also like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the Spanish MINECO is gratefully acknowledged. This work was also supported by the CPAN CSDD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish Consolider- Ingenio 2010 programme, by grant DO2-353 of the Bulgarian NSF, by grant 127740 of the Academy of Finland, by the DFG Cluster of Excellence “Origin and Structure of the Universe”, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0, by the Croatian Science Foundation (HRZZ) Project 09/186 and by the Formosa Program between National Science Council in Taiwan and Consejo Superior de Investigaciones Cientificas in Spain administered through grant number NSC100-2923-M-007-001-MY3.

References

Table 1. Spectral Parameters

<table>
<thead>
<tr>
<th>Phase</th>
<th>$F_\gamma^{10^{11} \text{MeV}^{-1} \text{cm}^{-2} \text{s}^{-1}}$</th>
<th>Γ_1^γ</th>
<th>$E_{\text{peak}}^{\text{GeV}}$</th>
<th>$F_{100}^{10^{11} \text{TeV} \text{cmd}^{-2} \text{m}^{-2} \text{s}^{-1}}$</th>
<th>Γ_2^{γ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1M</td>
<td>9.09 ± 0.15</td>
<td>1.88 ± 0.01</td>
<td>3.54 ± 0.14</td>
<td>4.18 ± 0.59</td>
<td>3.25 ± 0.39</td>
</tr>
<tr>
<td>P2M</td>
<td>3.17 ± 0.07</td>
<td>1.98 ± 0.01</td>
<td>6.88 ± 0.62</td>
<td>8.48 ± 0.62</td>
<td>3.27 ± 0.23</td>
</tr>
<tr>
<td>BridgeM</td>
<td>8.05 ± 0.11</td>
<td>1.73 ± 0.01</td>
<td>6.74 ± 0.34</td>
<td>12.2 ± 3.3</td>
<td>3.35 ± 0.79</td>
</tr>
<tr>
<td>BridgeE</td>
<td>1.04 ± 0.04</td>
<td>1.43 ± 0.04</td>
<td>6.53 ± 0.85</td>
<td>3.7 ± 1.1</td>
<td>3.51 ± 0.97</td>
</tr>
</tbody>
</table>

(a) Spectral parameters obtained by fitting a function $F(E) = F_\gamma(E/100\text{GeV})^{1-\gamma}$ exp(E/E_{peak}) to Fermi-LAT data between 100 MeV and 300 GeV

(b) Spectral parameters obtained by fitting a function $F(E) = F_{100}(E/100\text{GeV})^{1-\gamma}$ to MAGIC data between 50 GeV and 400 GeV

Fig. 4. Energy spectra of Crab Nebula, P1M, P2M, Bridge M and Bridge E measured with Fermi-LAT (below 50 GeV) and MAGIC (above 50 GeV)